Contributions from the Department of Biology, University of Western Australia. No. 4.

Description of a New Species of Terrestrial Isopod, Haloniscus stepheni, from Western Australia, by Geo. E. Nicholls, D.Sc., F.L.S., Professor of Biology, and Helena M. Barnes, B.Sc.

(Read July 13, 1926. Published July 20, 1926.)

The specimens whirh form the subject of the present commmnication were collected by one of us (G.E.N.) when on a trip through the northern part of the Wheat Belt in Jamary of this year.

The find was a purely accidental one, a trivial motor defect having caused us to pull up by the bank of the Kokatea Creek; at the particular spot the Creek at this time was dry, but the surface ctust, thickly spread with salt crystals, covered a viscid mud beneath.

The weather was intensely hot ($115^{\circ} \mathrm{F}$., shate temperature), but a slight fall of main a couple of days carlier had served to effect a temporary moistening of the surface, which persisted in shated spots. When flowing, the Creek (which had been strongly salt for several years, as was learned from enquiries made locally) discharged into the Grechongh River. A few stones resting upon the muddy crnst were tumed and yiedded nothing of interest, but a comple of small logs, in a very decayed state, just upon the upper limit of the Creek bank, concealed eatch a dozen or so of the Oniscid. They were comparatively small, but their umsual colour (whitish, with dark intestine indicated through translacent bedly wall) and their exceptionally compressed and elongate shape, marked them as new, and, consequently, as many as possible were collected. They were quite active and a umber succeeded in making good their escape down tiny burrows into the softer mud beneath. Trndoubtedly they are capable of leading life moder terrestrial conditions, but their occurrence upon the banks of a areek which is brackish at the best and predominantly salt, suggested a reldationship with forms inhabiting salt waters or the shores of salt lakes. A comparison of otr specimens with the deseription furnished by Chilton of Haloniscus scallei, left us in mo doubt of its close re-
lationship with that form. Advantage was taken of the opportunity afforded ly a reent visit to Adelaide to examiue specimens in the collection of the S.A. Ifusem, and it then became apparent that our Western Australian form also showed marked affinities with Philoscia salimu Baker, known only from salt water pools near the South Australion Coast. Chilton states (1920, p. 72:5) that he had experienced corsiderable difficulty in assigning the new species to its proper phace in the Oniscoidea, and he finally decided to constitute for it a new gemus. He pointed out that its nearest affinities with existing genera were with Philoscia, from which, however, it differs in a number of characters. Baker, in referring the South Australian species to Philoscin, appears to have been mavare of Chilton's paper.

It has seemed best to us to accept Chilton's riew of the generic distinctuess of this species, and since all three forms are much alike in mode of life (in or upon the shores of salt water), and agree closely in their structural pectianities, we suggest that Baker's spereies shomld be transferred to Haloniscus.

For the West Australian form the name Haloniscus stephen is proposed, the specific desiguation being in compliment to Mr. Wm. Stephers, of Perth, through whose kindness this collecting trip was rendered possible.

Gell. Haloniscus. Chilton.

1920, Huloniscus (Sp. typ. H. searlei). Chas Chilton, Proc. Limn. Soc. N.S.W., Yol. 44, Part 4, p. 723.

Body elongated narrow oval, convex; dorsal surface smooth, covered with fine hairs. Cephalon rounded in front, withont lateral lobes. Mesosome with the side plates not greatly expanded. Metascine very slightly marowed; third, fourth and fifth segments with distinct epimera; last segment large and with well-developed lateral portions; extremity sub-triangular. Eyes present, lateral in position. First antemua minute three-jointed. Sccond antema comparatively shon't, flagellum three-jointed. Legs well developed and increasing in length posteriorly, the anterior four pairs prehensile, more or less sul-chelate; the fifth, sixth and seventh, simple; dactyls bi-unguienlate, without special dactylar seta. Pleopoda conspicuons with well developed opercular plates lacking air cavities. Uropoda exposed, moderately developed, with peduncles reaching beyond the end of metasome; inner ramms attached only slightly in front of the outer.

Remarlis:-Closely related to Philoscia, but aiffering from that genns in the scarcely marrowed metasome, the possession of a large terminal segment, with well-developed lateral expansions. Of perhaps lesser importance as distinctive features are the comparatively
short antemade, and the orenmener of definite epimera on third, fourth :and fifth segments of the metansome.

With three slerebes:-
H. searlei Chilton, 1920, sp. tyll, Proce. Linn. Soc. N.s.W., Vol. 44. p. 73.
H. salina (Baker), 1926, Plituscia s., Baker in Rec. Stlı. Anstr. Mus, Vol. :3. No. 2, p. 145.
H. stepheni, sp. nor.

Haloniscus stepheni sp, nov.
Specific diagnosis.
Body ahmost four times as lomg as brom, with dorsal smeface covered with momerons short hairs. Eyes moderately developed. Legs gratually increasing in size posterionly; the fon anterion pairs approximately similar in shape, slightly prehensile, and with their joints more or less recetanglar'; the fifth intermediate in slape and size; the sixth amd seveuth similar in shape; pheopods with operfular plates well derefoped, gratually decreasing in size posteriorly, with the exception of the tirst pair, which are small and apparently lack setae: emdoporls of the first and serond pairs modified in the male in the usual mamer, those of the thired, fourth and fifth branchial and comparatively well developed. Tropods moderately exposed with the lasal joint reaching slightly beyond the end of the metasome; rami different in shape, the outer three-sided and pointed, the imer tapering to a point, slightly flattened on one side.

Colour: Creamy white, translueent, the food laden intestine visible through the borly wall.

Length: Largest specimen about 7 mms.
Locality: Under damp logs by the bank of kokatea Creek, near Tenindewa.

Detailed descriplion (taken from male speecimen):-
The eonvex body is of a long oval shape, the length being almost four times as great as the breath, and thas notably marrow; the lateral portions are not greatly expander, the dorsal surface is smooth and covered with mumerons minute fine lairs. The mesosomatie segments are sub-equal in length; the epimera of the first four are romnded posteriorly, while those of the last three are acutely produced. The efphatom is rombed and withont lateral bobes. The femtal marginal line of the head is evident through ont its entire length and is bent downward on either side surombling the epistome, being comtinmons with the vertical marginal line at the back of the eyes. The metasome is without epimer: on the first and second. segments, these being covered laterally by the last mesosomatic segment, in the extended position; the epimera of
segments three to five are well developed. The first five segments are sub-equal in length, the two anterion being very slightly shorter; the last segment is large, slightly narrower than those preceding, rounded posteriorly and with very evident lateral portions.

The cyes are moterately developed, compound, lateral in position.

The first antoman ($\mathrm{Pl} . \mathrm{X}, \mathrm{Fig}$ 3) las thre joints, the first froader and longer than the second; the third longer and narrower than the second, and bearing at and near the apex a number of stont setac.

The scomad antenna (Pl. X, Fig. 4) has the first tlivee joints of the perduncle more or less sub-equal, the fouth is longer than the third, the fifth as lomg as the third and fourth combined. The flage!limn is alproximately efpual in length to the last segment of the peduncle, and consists of three joints, the second being the shortest; the third longer than the first and tapering to the apex, which bears a tuft of setac.

The upper lip is broaler than long, and has the central portion eorered and fringed with slort setae.

The right manclible (Pl. X, Fig. 6) has the outer cutting adge strong and composed of three chitinous teeth; the imer cotting edge is less strongly dereloped and divided into two teeth; two penicils are present and the nsual tuft of long plomose setae; the cilisted lappet is small.

The left mandibie ($\mathrm{Pl} . \mathrm{X}$, Fig. 5) has the outer cutting eage represented by four strong chitinous teeth; the imner is distinctly deffined and dirided into a mumber of teeth; three penicils are present, two upper and one lower; ciliated lappet prominent; setale i:l lowest group long and plumose.

Both the mandibles lave the upper distal edge fringed with setae.

The loneer lif is small, narrow, and has the inner and outer (rlistal) margins fringed with setae, also the surface near the in:cer margin.

The first maxilla (Fig, 1, 1) has the external margin of the outer lobe slightly simuons and fringed distally with a number of fiue setae; the apex hears eight or aine setale, the four outer darker in colour that stronger than the imer. The imer lobe is more delicate and about lalf its width; the couter margin bars a number of fine setae distally; at the ause are the usual two phumose setae, whith are short and stout.

Fig. 1.-Haloniscus stephoni. 1, 1st Maxilla; 2. End Maxilla.
The second maxilla (Fig. 1, 2) is delicate, the outer lobe broad and clothed apically with numerous fine setue. Its internal matgin bears a number of longer and stronger setae. The inner lobe is narrower and more strongly chitinized, and bears mumerons setae of different forms, a group of about nine or ten near the imer apex being thick and strong.

The maxillined (Pl. X, Figs. 7, 8) has the hasal joints broad and rectangular; in the palp, the first joint only is well defined and bears a couple of spines. The thee terminal joints are coalesced into a single pricec, the extent of each joint being indicated only by the position of a group of setae. Slightly sloorter than the palp,
the truncolte masticatory lobe bears sub-apically a penicillum, and anically is beset with short sotae. The epipod is very consiterably more thath latf th. rombinerl lengile of the basal joints.

 bing romghly rectangular in form, the ischimm, howerer, being sub\{riansulax; the ciacty stemax, bi-mogniculate and without a special dactylar seta. The propod is marrow, and has a mamber of stout setace on the imere siale; with the dactyl it forms upon the carpus at prehemsile structore. The immer sides of the carpus and merus bear a mamber of lono stour ratace similal to those on the propod.

The second prair of leys (Fig. 2, t) is longer than the first, with the carpus thm merns slighty mamower than those of the first pair. The propod and sactyl are similar, but longer. The spiates on the c:arfus are much longer, those on the propod and merus more mamerous.

The third and fourth pairs of legs are similar to the second

Fig. 3.-Maloniscus stcphoni. 5, ith pair of legs; 6, 7th pair of legs.
pair, but less sub-chelate, each slightly longer than the preceding. The spines on the propod, curpus and merus are more scattered.

The fifth pair of legs (Fig. 3, 5) is longer than the fourth, and intermediate in character between those of the anterior group and the following.

The sixth and seventh pairs (Fig. 3, 6) are similar in shape, the seventh longer than the sixth, both distinctly longer and stouter than the fifth pair. The spines are more sparse. The ischium bears a nmmber of fine setate on its anterior border.

The first pair of pleopods in the male (Pl. X, Fig. 9) has the usual structure, the exopods delicate and slightly rounded, with no suggestion of setac. The endopod is modified, broad at the base and tapering to the apex, grooved on the inner margin. The endopods are approximately twice the length of the exopods. The male organ is single and tapering, reaching to the ends of the exoporls.

In the sccond pair of pleopods (Pl. X, Fig. 10) the exopods differ from those of the first pair, being longer and broader, and pointed at their apices. The imner margin is fringed with fine setae, which increase in length posteriorly. The outer margin bears a few spinous setae together with mmerous fine setac. The slender endopods extend beyond the exopods and taper to a fine point.

The third, fourth, and fifth pairs of ploopods (Pl. X, Fig. 11, $12,13)$ are similar in shape, but become gradually smaller: The exopods are more or less pear-shaped with their inner margins fringed with fine setae, the outer bearing a number of long ant? stout spine-like setae interspersed with finer setae. The endopods are moderately developed, irregular in shape, and have the usual branchial function.

In all of the pleopods the peduncles are well developerd.

In the uropods (Pl. X, Fig. 14) the basal joint is roughly quadrilateral in shape, almost as broad as long. The outer ramnis is three sided and pointed, grooved extemally. Apically it bears a number of long, fine setae. The inner ramus tapers to a point, is slightly flattened on one side and grooved as in the outer ramms. It is inserted only slightly anteriorly to the outer and is more than half the length of the latter.

The greater mumber of specimens collected are males, a fact which could readily be made ont by an inspection of the endopods of the first two pairs of pleopods; of the remainder, nome bear eggro and camot be definitely recognised as females. In all, the body list the same general structure. The specemens were preserved in strong alcohol, and atl had become dorsatly flexed, some very strongly indeed.
II. stepheni may readily be recognised from its congeners by its extremely narrow borly, fom times as long as wide, the lengem in H. salina being less than thore times the width, while in H. searle the breadth is relatively grater still, being little less than hatf the length. The translucency of H. stepheni seems to be peenliar, also, and suggests that livinge as it does in an area of much lighter rainfall, and subjected to much greater risk of dessication, it has berome habitnated to lengthy periods of subterrancan life, this burowing habit donbtless being associated with the attemuated form of the body.

The eye of H. stepheni is intermediate in size between that of H. searlei, which is much larger, and that of H. salina, which is distinctly smaller.

In the general rectangular shape of the joints of the legs H. stephemi differs from both of the other species. In none of owe specimens was the merus broadened as it is said to be in I. searlei and $I I$. salina. The relatively considerable length of the endopodites of the pleopods 1 and 2 also appears to be peculiar to H. stepheni. Ir: its telson it resembles $7 l$. salina, the lateral portions of this region being much more evident in I. scarlei.

The discovery of a thited species of this genus, which, mulike. the other two forms, is capable of living out of water, is of considerable interest.

Chilton, in his discussion (1920 , pp. $732-4$) on the ocenrience and origin of H. scorlci, comes to the conclusion that that form is to be regarded as a terrestrial form which has become adapted to an aquatic existence, rather than a marine form cut off from its oceanic comnections and smeviving in salt lakes, his conclusion being strengthened by the evidence that Lake Corangamite is not of marine origin.

In HI. sulina we have equally an aquatic form living in the muddy border of a small coastal salt lake of a high degree of
salinity, in a depth of six feet of water. All were taken well away frem the shore and it is stated (1926, p. 145) that nome wore found under dehris on the shore-though earefully sought for This little erustacean is said also to oceur in other salt lakes in the neighbourhoot.

Our specimens fomd near Tenindewa were, as stated above, found on land, though evidently at the surface from burrows extending down into moist salt-impregnated mud. There is no means of knowing whether, in wetter conditions, the animals would have been found actually in the water.* There are, in the near vicinity, no salt lakes, although some exist at a distance of abont 50 miles to the east. A few weeks earlier there had been unusual and heary summer storms, and many areeks were flowing ont of scason, so that these small forms might casily have been carried for a considerable distance. The ereck is, however, normally regarded as a salt ereek, and was deseribed as having been at this season rather less salt than usual. The visible salt at the surface suggested a considerabie degree of salinity. It is possible, however, that the sea in Miocene times extended northwards from the Bight towards this sontheru fringe of the Murchison country, and we may perhaps regard these isolated forms as survivors of in lefinitaly terrestrial, but coasthaunting form which once was distributed along the entire Southcrn Australian shore in Mid-tertiary times and which have rematmed as tolerant of salt as those recognised coastal forms, the scyphacilae.
*It is my eustom, when taking smill cinstaceans from the borders of streams or lakes, to aseertain by experiment, whether or no they will survive for any length of time in water. U'nfortunately, ob this oefasion the experiment was not made, no water being a vailable.-G.E.N.

List of Rfferences.

I868 Bate \& Westwood. British Sessile-cyed Crustacea, Vol. II, p. 448.

1901 Chilton: Trans. Limn. Soc. Loudon Zool., Vol. VIII, Pt. IV, p. 136.

1920 Chiltom: Proc. Limm, Soc. NS.W., Vol. XLTV, Part 4, 1919, p. 723-734.

1926 Baker: Rec. S. Aust. Mus, Vol. III, No. 2, p. 145, Text Fig. 77.

All figures refer to H. stephemi, ant abe drawn from a mata specimen.
1.-Lateral view of entire animal. x14.
2.-Dorsal view of entire animal. x 10 .
B. - Antemmule. x7\%.
4.-Wight mintema. x8D.
5.-TCerminal portion of left mandible. x39.
($\%$-Terminal portion of right mandibie. x39.
7.-Right maxilliped seen from ventral surface. xas.
8.-Terminal portion of left maxilliped in ventral view. x.39.
S.-1st pleoporl of male. x33.
10.-2nd pleopod of male. xis.
11.-burl pleoporl of matc. x33.
1..-4tli pleopol of male. x33.
i:3-Eth pleoporl of male. x33.
1.4.-Terminat segment and mropods, dorsal view. xe?

